
βeta
— news from computer science and engineering —

Security is a Mindset page 6


What’s On

page 2


Tech Roundup

page 3

*
Editor Artisans

page 4


Puzzles

page 7

issue 130 — 22th May 2017 — 17s1 Week 12

βeta
CSESoc βeta, issue 130

A fortnightly publication from CSESoc’s Beta team.
Find us online at www.csesoc.unsw.edu.au

Got some good content? Email
csesoc.beta.head@cse.unsw.edu.au

βeta Head
Melissa Zhang

The Article-ator Puzzles Wrangler
Ben Pieters-Hawke Kevin Tran

Contributors
Gary Bai Dan Kennedy Thomas Flynn

Adam Smallhorn

In This Issue
Editorial . 2
What’s On . 2
Tech Roundup . 3
Canva Frontend Engineering talks – 31 May 2017 . . . 3
Artisans in the Editor 4
Security is a Mindset 6
Easy CTF . 6
Logic Puzzles . 7
Brain Teasers . 7

Editorial
Welcome to the last issue of Beta for this Semester!
This week’s exciting installments include the latest news,
upcoming events, and a look into the world of security.
Remember to read the weekly Soc Announce and regu-
larly check out our facebook page at htps://www.face-
book.com/groups/csesoc/ to stay up to date with the ins
and outs of CSESoc!

Want to be a part of the team? Beta is always wel-
come to new members, so just ind us on Facebook
at CSESoc Beta Team 2017 or send me an email at
csesoc.beta.head@cse.unsw.edu.au. We’ll help you ind your
place within the team where you can sit back and watch your
ideas come to life in delectable black-and-white print!

Have a wonderful Winter break and I’ll see you next
Semester!

Melissa Zhang

What’s On
Today! CSESoc’s Weekly Barbecue social

12:30–2pm, John Lions Garden
Come on down to John Lions Garden for your weekly
dose of free barbecue! Don’t forget to pick up your
copy of CSESoc βeta, and make some new friends!

29 May Awesome BBQ x Bakeof social

12:30–3pm, John Lions Garden
CSESoc is bringing you the biggest and best BBQ of
the entire semester - THE AWESOME BBQ!!!
In addition to our regular sausages we will have spe-
cial meats, salads and snacks to feed you well over
extended hours so that you can keep your stomachs

full until the next semesterlyBBQ onWednesdayWeek
1, Semester 2. Bring your friends, its going to be HUGE!

Additionally we are also holding this event in parallel
with our annual CSESoc Bake Of competition! This
is the perfect chance for you to show of and bake
something for our members at the BBQ and win some
AMAZING prizes along the lines of last year’s CSESoc
Apron and embroidered wooden spoon! Cakes, cup-
cakes, biscuits, or even your own zesty invention - we
want to try it! Don’t want to fork out your own money?
We’ll be ofering $10 Woolworths vouchers to the irst
5 registrations. For more information, check out the
event on Facebook!

2 CSESoc.unsw.edu.au βeta 2017/issue130

Tech Roundup
Welcome to Tech Roundup!

Google I/O, Google’s annual developer conference, was held
last week near the company’s Mountain View headquarters.
Therewere a number of announcements and products shown
of - too many for this short piece. We’ll focus on what was
arguably the most popular and exciting one - Google Lens,
a cool new image recognition technology. Google Lens can
recognize what a phone’s camera is seeing, and perform an
appropriate action - such as connecting to a wi-i router,
translating text, inding reviews, and so on. There isn’t a
solid release date for the Lens yet, but it’s likely the technol-
ogy will be integrated into pre existing apps such as Photos,
or Assistant.

Not a fan of Java, but want to do Android development?
There’s plenty of ways to get around that problem - Xam-
arin, React Native, and so on - but have you ever considered
Kotlin? Perhaps you have - it’s been possible for a while -

but Android Studio 3.0 is going to include oicial support for
Kotlin. And unlike Go, the support for Kotlinwill be irst class
- which means Kotlin will support the full Android API. In
related news, Google and JetBrains will also be collaborating
to create a non proit foundation for Kotlin.

Speaking of Developer conferences, Microsot also held their
annual Build conference last week. Perhaps the most rele-
vant piece of news for those of you using Windows is the
announcement of the “Fall Creator’s Update”, another ma-
jor Windows 10 update, which will arrive sometime in the
Australian Summer. Besides the design, store, and Cortana
changes to be shipped with this update, readers might also be
interested in the improvements Microsot will be making to
the Linux Subsystem - the major announcement regarding
this topic being the inclusion of other Linux distributions, as
well as USB device communications, allowing you to use the
subsystem for things like Raspberry Pi.

Gary Bai

Canva Frontend Engineering talks – 31 May 2017
Canva will be hosting their second Frontend Engineering talks on May 31st. The main speaker will be Ryan Cavanaugh, one
of the core contributors to TypeScript at Microsot. Cavanaugh says:
_“TypeScript started when it became apparent at Microsot that we’d be writing many more large JavaScript applications in
the future, but JS wasn’t well-suited for large-scale application development due to maintainability problems presented by a
lack of static typing…. TypeScript inspires me because it solves a real problem in a simple, elegant way. There’s nothing I
love more than seeing someone on Twiter say something like “I was hesitant at irst, I’m never going back to JS ater using
TypeScript”_
Ryan, Sharon Kuo and Marc Fallows of Canva, as well as Chloe Chen of the CSIRO will be talking about “typed JavaScript”
technologies and what the future holds for them. So grab a ticket (free delicious dinner and drinks included) and come and
mingle with frontend engineers from all over Sydney!

Where: Canva oice, 2 Lacey Street Surry Hills
When: May 31, 6:30-8:30pm
Tickets: $10 on Eventbrite. Free UNSW tickets are sold out, paid tickets selling fast!

Dan Kennedy

CSESoc.unsw.edu.au βeta 2017/issue130 3

Artisans in the Editor
Style is regarded as a fundamental property of good code.
Generally, a programmer’s irst introduction to style is
through an organisationally-mandated ‘style guide’ that de-
tails everything from where to place one’s braces to which
language-features not to use. Curiously, the concepts of style
and taste extend to many areas within computer science (CS)
and sotware engineering (SE). I sat down with senior lecturer
Dr Eric Martin of CSE to delve into the basis of style and its
reach through the disciplines.

I began by posing the question - To what extent can we aford
to pay atention to style, when other factors - being eicient,
being productive, being cost-efective - seem to be of much
higher importance?

Dr Martin explained how reading and writing code can be
looked at allegorically as reading andwriting literature. When
we begin to read a work of literature, we become aware of the
author’s way of expressing themself - their use of particular
language, how sentences are constructed and the resulting
low of the story. As one observes their writing - 10 pages
in, 20 pages in - we get to know the paterns and predict
their choices. Ater some time we start to think as the author
thinks. Their style becomes familiar and importantly, the
paterns of their writing unsurprising.

He goes on to suggest that this allegory is employed as a
model of collaboration between programmers. We use style
as norms - a set of guidelines that a group adheres to. This re-
duces the chance of the ‘authors’ creating surprises. Style as
norms allows a programmer to step into a project and become
productive as an author of the story. This is the case of style
in the realm of organisations, deadlines and productivity.

Alternatively, we can address style as elegance. Dr Martin
references the French naturalist and mathematician, Bufon
- “The style is the man” [0]. He elaborates further - “Being a
human being is irst having a particular style - that is what
deines you”. When we look to solve a problem with code,
when do we consider that we are inished? Does the work
end on the basis our program passes all test cases? According
to Dr Martin, the real work begins ater we ind a solution.
The process of polishing is when a programmer transitions
from engineer to artisan, crating programs for which every
line is considered over and over again in pursuit of clear,
succinct, powerful statements. From such a meticulous ap-
proach yields code which is personally satisfying to the pro-
grammer. With this satisfaction, ingrained in the iles, in the
source, is the essence of this person - their style.

I then considered the broader reach of style into CS. Dr Mar-
tin stated in a lecture on object-oriented programming that
“Within computer science there are many churches”. How
does this afect a programmer’s approach to solving problems
- is a style enforced by each paradigm individually, or is it
a ‘church’ in and of itself (as preached in Clean Code [1], for

example)?

Dr Martin says the crux of this statement can be likened to a
user of a particular operating system. They begin fumbling
theirway through until eventuallymastering its environment.
They transition to a power-user. It is at this stage, they see
solutions to their problems in the tools and features of this
particular operating system. To think outside this system is
impossible until an alternative is learned. I relect on this
analogy with the cliché describing conirmation bias – “If all
you have is a hammer, everything looks like a nail”. Dr Mar-
tin makes it clear how followers of paradigms may champion
them as a perfect solution towriting code, the extent towhich
philosophical arguments are made for their absolutism.

Ultimately, this outlook exposes how personal taste can in-
luence the higher level decisions of solving a problem. In
practice, as programmers and engineers, we should look at
the tradeofs between various approaches to solving prob-
lems and collect them in our tool box. Dr Martin shared his
own preference to language selection:

“Within programming languages, we have lots of syntactic
variations to write particular statements. A language which
is very rich in syntactic constructs makes it harder in some
ways… That is why I like lean languages, where you have
pure syntactic constructs to choose from. Then you can play
this game of: Can I ind the best possible style?… We are then
puting the emphasis on choice of algorithm than on choice
of how to translate this algorithm into a piece of code.”

I then turned to the pragmatic goal of writing sotware –
creating systems to solve problems. In The Art of Unix Pro-
gramming [2] the notion of developing an “intuitive feel for
the Unix style” is emphasised. Do systems themselves em-
body the style of the code they are comprised of?

Dr Martin opens with the classic phrase “Small is beautiful.”
As a system becomes more complex - made of more and
more modules – we typically look at it from an increasingly
abstracted point of view to make decisions about its architec-
ture. This necessity to manage the codebase from a higher
level perspective tends to laten out notions of style and ele-
gance, relating back to how norms function as a collaborative
model between teams of programmers.

This brings us back to the way we looked at style in diferent
contexts and the way in which we incorporate its notion in
our own work.

He draws focus to his approach as a mathematician “I like
to polish mathematical proofs and deinitions as much as I
like to polish code.” He feels that an elegant solution is one
that is unique by its deinition - oten we ind that multiple
occurrences of a solution can be shown as equivalent under
certain assumptions. We have no reason to hold one above
the other. When we provide some additional constraints or

4 CSESoc.unsw.edu.au βeta 2017/issue130

alter the assumptions these break down, and we conclude
that we have missed something within the problem. Simi-
larly, when writing code, we must be able to determine when
one solution is ‘more correct’ than another. It is a common
situation to write what seems like a functional solution only
to ind edge cases that immediately break it, in which case
we must change our thinking (or simply add a 14th nested if
statement).

Iwanted to know, as programmers, ifwe could consider a pur-
suit of more stylish code as a means to improving technical
ability.

Pointing out the pressures of balancing work, university and
life, Dr Martin admits that it can be very diicult for program-
mers to ind time to properly consider style in their code. One
way we can try to consider style is from the time we think
about the problem, design a solution, to the time we code it
and inally, test it. However, if we relate back to the notion
of the real work happening ater we ind a solution – relect-
ing on what is writen and really thinking hard about if we
can make it simpler, leaner, more elegant – Dr Martin says,
“Forcing yourself to ask these questions, you can really begin
to take style seriously.” A way in which we can assist this
process is by writing good comments – explaining a piece of
code to yourself in the clearest possible manner oten sug-
gests a way to improve your code. Dr Martin states that oten

he makes changes to code just ater writing a comment. Con-
clusively, all this deep work on style occurs ater we have
found a solution. It requires discipline to go back and work
on what is already an acceptable solution, which is usually
a luxury under the constraints students and professionals
alike are faced with.

Dr Martin sums up the interview with his thoughts on why it
is important to pursue the notion of style outside of merely
the appearance of code, “It makes programming more enjoy-
able, giving you a sense of fulilment – as you become more
satisied you become more passionate, more motivated and
keener to push yourself harder and harder. As a side efect,
you will achieve more.”

By looking past the goals of simply geting our programs
running, having the ‘correct’ appearance and passing all test
cases, we can allow ourselves to experience a deeper satis-
faction in writing sotware.

[0] Discours sur le style (the “Discourse on Style”), George-Louis
Leclerc De Bufon, 1753.
[1] Clean Code, Martin, R.C., 2008.
[2] The Art of Unix Programming, Raymond, E.R., 2003.

Thomas Flynn

CSESoc.unsw.edu.au βeta 2017/issue130 5

Security is a Mindset

To understand the importance of security in today’s world,
you only need to look at the 1983 ilm “Wargames” - a ilm
about nuclear missile control vulnerable to hacking. In 1983,
if you wanted to make a ilm about the dangers of hacking,
you needed to convince the audience that hacking comput-
ers could actually cause real-world damage. In 2017 nobody
needs convincing - our news is illed with the latest atacks;
from businesses to hospitals all the way to the failed North
Korean Missile tests.

Security breaches are becoming increasingly problematic. In
1983 there was not much damage you could do by hacking a
server, but today vast chunks of our critical infrastructure is
connected to the internet - our hospitals, our power grids, our
inancial networks. We now also collect more personalised
data about ourselves than ever before and we give connected
devices unprecedented access to our lives. The threats to
our economy, privacy and safety are clear, but we’ve only
recently realised the more subtle inluence poor security prac-
tices can have on fundamental parts of our democracy like
our elections. All hackers seek these things : data, control
and inluence. Unfortunately the situation is likely to get
worse before it gets beter.

The solution to the security problem is not a irewall; it’s not
an app, machine learning or even just writing secure code
- but rather the development of a mindset. At UNSW we
have the philosophy that to be a good defender you must
understand the techniques of a good atacker. We ought to
know, having secured 1st place in CySCA - a Federally spon-
sored hacking competition for university students - every
year since it’s inception, including as recently as last week.

However this ‘hacking mentality’ is not some deviant ideol-
ogy out of Kensington - it is the prevailing thought process
for the entire security industry. Hacking is baked into the
culture of security engineers across the globe.

Many years ago when starting university I was given a piece
of advice from a retiring engineer - “I wish there had been
someone to tell me where the industry was going, what new
challenges and issues were going to be important in the
decades ater I graduated”. For this decade - the challenge
we face is security. The security of our future is a problem
for all of our generation, but the solution lies in the hands
of few - people like you with the technical ability to make a
diference.

So how can you get involved? What role can you play? I think
it’s a mortal sin for any computer scientist to leave univer-
sity without a grasp of how to write secure, defensive code,
so if you can, enrol in a security course before you graduate.
Many security courses, including UNSWs, are online and just
a quick online search away. But don’t stop there, investigate
for yourself; do a litle security research on the side. You’re
at the best university in Australia for Cyber Cyber, so take
advantage of it. Learn what it is like from the other side, Get
involved with a Capture the Flag competition (beter known
as a CTF) where you can test your hacking skills in a sim-
ulated environment. Join the UNSW Security Society and
leverage the strong community we have.

We need a generation of critically thinking engineers with a
trained security mindset before anything will get beter.

Adam Smallhorn

Easy CTF
Want to get into Capture The Flag competitions but don’t know where to start? Try EasyCTF! It’s a competition pitched at
people who don’t have any experience in CTFs (or in security at all).

You can ind the problems and solutions here: htps://writeups.easyctf.com/

Here’s two of the problems:

Please help me write the Fizz Buzz program (which reads in an integer N on standard input and prints the numbers 1 to N,
each on a new line, replacing multiples of 3 with Fizz, multiples of 5 with Buzz and multiples of 15 with FizzBuzz).

Oh no! Two of my keys are broken! Can you write the program without ‘?’ and ‘i’?

6 CSESoc.unsw.edu.au βeta 2017/issue130

Logic Puzzles

Suguru
The heavy lines indicate areas, called cages, from one to ive squares in size. Fill each cage with unique digits, counting up
from 1. For example a 2-square cage contains the numbers 1 and 2; and a 5-square cage contains the numbers from 1 to 5.
Adjacent (touching) squares, even ones that touch diagonally, may never contain the same number

Brain Teasers
Puzzle #1
There are three kids. The teacher has six treats: three chocolate bars and three lollipops. The teacher will secretly hand each
kid two treats at random so that they cannot see what the other kids got. You would like to know what treats the irst child
got, but you may only ask him one question, to which he can only respond with: “yes” “no” “I don’t know”

What question do you ask? You may assume the kids are, of course, perfect logicians.
Puzzle #2
Everyone knows that tic-tac-toe is a draw, but what about loser’s tic-tac-toe? That is, you win if your opponent makes three
in a row. Should you play irst or second, or is this game also a draw?

CSESoc.unsw.edu.au βeta 2017/issue130 7

This Edition of βeta Sponsored By...

8 CSESoc.unsw.edu.au βeta 2017/issue130

	Editorial
	What's On
	Tech Roundup
	Canva Frontend Engineering talks – 31 May 2017
	Artisans in the Editor
	Security is a Mindset
	Easy CTF
	Logic Puzzles
	Brain Teasers

