Final Design Report

A conductible music player device

Table of contents

Executive summary
Introduction

Feature Set
Feature Overview
Deviation from initial plans
Limitations of final design

Task Breakdown
Hardware Design

FPGA Design
Task breakdown
Downloader

Baton detection & BPM display

Playing module
PWM & Tone generation
Nexys board features

FPGA hardware — software interface

Waveform Generation
Software Design
Final Budget
Retrospect

Appendices
Appendix 1
Appendix 2

O O O 00 000 ® W U A KN WW W w

N R
S O

[S S G Y
N R R

L I
AN LW W

Executive summary

This report presents the designing of an interactive music player built on the Digilent Nexys board with a
Spartan 3 FPGA. This design makes use of an IR sensor to detect a user specified beat and play music
back at that speed. An application to write and download songs was written to use with the device. In
this design, the spec design objectives and extension objectives were met.

Introduction

The task of creating a music player seems trivial at first. However, under the surface there are many vast
and complicated technologies at play. The project specification called for the creation of a conductible
music player based on the Digilent Nexys board with Spartan 3 FPGA.

Whilst music devices are relatively common, the use of the Nexys board meant that many things that
are taken for granted (such as pulse width modulation, digital to analog convertors, firmware) did not
exist, and had to be developed and implemented from scratch using VHDL. Furthermore the spec called
for a complicated control mechanism with a baton and interaction between the device and custom PC
software.

Fortunately, many of these functions are replicable in hardware such as the Spartan 3 FPGA, and some
tools are available to aid device to PC communication.

Feature Set

Feature Overview

The core features of our design were based off the requirements of the project specifications — namely :
playback of music downloaded from a PC, sensing the motion of a baton to control the music tempo,
and the development of custom PC software to create music files. Part way into the development of the
device, we realised it would be trivial to implement some extra features including: fast forward, rewind,
play, pause, stop and volume control.

The PC software was designed to allow users to intuitively compose songs within the app and to easily
download the song to the device within seconds. To achieve this, we built a graphical user interface
(GUI) including a full scale C3-C6 keyboard with functional keys. For music composing, the GUI allows
the user to set music settings like note type (normal, slurred or staccato) with a radio button, beats per
minute with a slider or text box, and note length with a selector. (See appendix 1 — Application
screenshot). The user is able to input music by clicking the piano notes in the GUI, by typing them in
directly in a text box, or by loading from a text file. At any time, the user is able to preview the song on
their PC by using the play, pause and stop buttons. To download the song to the board, we include
simple buttons within the GUI. The Encode button will translate the music file in a byte format suitable
for the board, and the Program to board button will transfer the byte file to the board.

User Interface and usability was also a factor, so we include simple features like a clear button to
remove the previously generated notes, a success dialog box when the file had successfully downloaded
to the board, and something as simple as remembering the previous directory used for file browsing so
you don’t have to navigate there repeatedly.

On the device itself, there are several features for users to change music playback. The simplest are
play, pause and stop buttons (buttons 0, 1 and 2 respectively). Pause will stop the music at a note and
not resume until the play button is pushed again, and stop will stop the music and return to be
beginning of the song when play is pushed again. Another feature is tempo control. The user can choose
between playing at the tempo specified in the file and a variable tempo by setting switch sw7 to on or
off respectively. If set to variable tempo, the user can conduct with the baton over the sensor, and after
4 swings the playback speed will change and the display will update with the new current BPM. If the
user would prefer to use a button over a baton, they can activate sw4 and use button 3 to control the
tempo. Fast-forward and rewind were some extension features that were able to easily implement. The
user can activate the FF/RW mode by setting sw6. The user can choose between the fast-forward or
rewind operation with switch 3, when button 3 is pushed the song will proceed at maximum speed
forwards or backwards through the song. Additionally, we saw the value of adding volume control as an
extension feature. The user can change the playback volume using sw2 and sw1 to select between 4
volume settings as a binary value.

Deviation from initial plans

Our initial feature set did not include volume or playback control (play, pause, stop, fast-forward or
rewind features). Volume control was included because after some initial testing of notes on the board,
it became clear that volume control was a very convenient feature, especially whilst in the lab with
other people, and this would likely be a useful feature for users as well. Play back control was added as
during development we saw that it could be added quite easily, and presented a convenient set of
additional features that are consistent with other music devices on the market.

However, our initial design report did include some features that did not make it in the final prototype:
playback statistics in the PC software, a filter circuit to clean up the speaker quality and an extended
range of notes. Playback statistics in the PC software represented an ambitious view of what might be
possible, but was not seriously pursued when development was started due to the large scope of work.
A filtering circuit for the speaker was not included because when we began testing, the speaker sound
output was of sufficient quality that additional filtering was not necessary. Likewise, whilst preparations
were made to file formats to include a wider range of tones, as we moved closer to the deadline, this
feature was deemed non-critical, so was removed to ensure more essential features could be
implemented reliably.

Limitations of final design

The only significant limitation of our final prototype was the maximum song length that was able to be
played. Our original plan was to support play back lengths of several hundred notes, however due to a
reliability issue with writing data to the board, we had to resort to checking that each byte of data was
successfully written, and rewriting it if there was an error. This meant having to supply an 8-bit address
value with every write. As our encoding format uses 2 bytes per note, this resulted in a maximum of 128
notes per song. In practice, for an average song at 80 BPM this meant nearly 1.5 minutes of playback.
Although not ideal, this still allowed for the majority of songs to be played.

Task Breakdown

In approaching this project, we sought to strike a balance between being able to work independently on
separate tasks and being easily able to integrate these components together. The key to this was

dividing the components so they had minimal and well defined interactions with other components.

We divided our project into the following areas:

PC Software (Software) — This component was responsible for the creation of music files,
reading files, encoding songs in the byte file format and allowing the user to download to the
board. This component was only required to interact with the downloader, calling it in the
background via command line and passing in a txt file as a parameter.

Downloader App (Software), Downloader VHDL (VHDL), Block memory (VHDL) — The
downloader had two parts, the C++ Windows executable (which took in a file from the
command line, and wrote each byte to the board) and the VHDL that receives the stream of
bytes and writes them to block ram. The Downloader app interacts with the PC software, and
the block ram is accessed by the timing module.

Detection circuit (Electronics) — The detection was performed by an IR sensor and comparator
which supplied a digital signal to the BPM calculation module.

Detection module (VHDL) — This component takes the digital signal from the sensor and creates
two values — beats per minute (BPM), and milliseconds per beat (MPB), which is how long to
play a crotchet in milliseconds. BPM is sent to the 7-segement display and MPB is sent to the
playing circuit.

Timing module (VHDL) — The timing module is responsible for fetching the notes and data from
block ram, interpreting the data and sending the note data to PWM unit.

PWM unit (VHDL) - PWM converts the note data into an analog signal for output in the speaker.

Music Player — Process Diagram

PC Software
FPGA VHDL
Electronic Circuit

User Opens Java
Music Maker Program

How does user create

Java program
creates text file

Text File is Encoded,
saved on local machine

Raw encoded

music file
— bit code
Saved locally

Java Program opens C program

C program USB

downloader program

Diligent DLL protocol
via USB transfer

Encodes music file according
to specification

Text file
by C program

music?

Java Program Encodes

Uploads
Predetermined
Textfile
3

Text file

Analogue signal
from sensor

opened

Analogue to Digital
signal conversion

Digital signal
from circuit

Digital Signal

Processing

Milliseconds per beat
binarv string

User picks up baton

Swings are detected
via sensor

BPM display on Seg7

BPM conversion
to BCD encoding

User swings

baton

freely

Board Loader

Writes bit code to block RAM

—

Bit-code
stored in

Flash Memory

Note, behaviour,

Tempo Control

Specified by
speed of baton

specified by User sets switch to
— —_— determine how tempo is

specified

Binary value coresponding to tempo

duration

Fetch next note

Tone Generator

to be played

Look-up frequency

of note

Hard coded
Note-frequency
Look-up Table
SRAM

(Xilinx Block RAM)

Binary encoded__|

Approximated

4— sine voltage

to speaker

Varying 8 bit value
corresponding
to note and tempo

¥

frequency

Varying level voltage output

Low pass filter

Hardware Design

The hardware component of this project was for baton detection. After much consternation, we decided
upon using an Infrared sensor, as it displayed favourable characteristics over the alternative sensors we
investigated - ultrasonic sensors were prone to error near low ceilings and a magnetometer required
specialised modifications to the baton. We used the Sharp GP2YOA21KOF analog distance sensor with a
range of 10-80cm. When the baton was present above the sensor the voltage would climb from a
resting voltage of approximately 1.1V to near 4 V. We used this output with a Texas Instruments LM331
digital comparator with a reference voltage set at 1.5V. The comparator was wired into the FPGA as a
digital signal representing whether a baton was detected.

The sensor had some strange side effects, including a periodic spike of 1.9 V every few milliseconds. We
suspected this was leakage from the internal clock the sensor must use to calculate the distance of
objects. We were able to overcome this by adding de-bouncing for the signal as it entered the FPGA,
thus negating the temporary periodic spikes.

We did not require a specialised baton, so any thin cylindrical object, such as a pen, is compatible with
the sensor.

FPGA Design

Task breakdown

Most of the logic of the device exists on the FPGA as different modules. Those modules can be roughly
divided into the following parts: downloader, baton detection & BPM display, playing module, and
PWM & tone generation.

Downloader

The VHDL downloader is the component that interfaces with the PC downloader software via EPP
(Enhanced Parallel Port). To do this it requires a shared data bus, and several control signals shared with
the PC. The VHDL downloader itself has two registers (one for storing addresses, and one for storing
incoming data) and a block ram module. When the PC downloader wants to write to an address in
memory, it must first send the address first, as the data bus is only 8 bits wide. When the PC downloader
sends an address, the VHDL will cache this value in a register. When the PC sends a piece of data, the
VHDL stores the data in a temporary data register, then uses the address register to provide the
destination address for the block ram module.

The code is based off an example file ‘DpimRef’ provided by Digilent and uses a finite state machine to
interact with the PC via EPP.

Baton detection & BPM display

The baton detection VHDL module receives a digital input from the electronic sensor that represents
whether a baton has been detected or not. The task of the baton detection module is to interpret the
swing detections to calculate the new tempo.

The particular algorithm that we implement to do this requires 4 swings through the sensor’s beam, of
which, two are used to calculate a new tempo. The first swing though the beam is detected, and sets of
a timer. The timer is not stopped until a second and third swing is detected, thus the timer value

represents two whole swings. (see appendix 2). This value is shifted to represent a value called
milliseconds per beat (MPB) and is supplied to the playing module.

The MPB value is also converted into BPM with by using repeated subtraction to implement division,
and then is converted again into BCD for display on the 7segment display.

Playing module

The playing module is responsible for fetching the notes and data from block ram, interpreting the data
and sending the note data to PWM unit. The playing module uses a finite state machine to control
whether the device is in playing mode, stop mode, pause mode, fast-forward mode or rewind mode.
When in playing, fast-forward or rewind mode, the module will fetch 2 bytes of data from memory. The
finite state machine will then enter a process data state, which parses the note type (normal, staccato
etc) and length from the data. Separate sub-modules calculated the total duration of a beat and the the
duration of the note based on the note length, note type and the current MSB (milliseconds per beat)
value from the baton detection unit. A separate unit within the timing module controls when the PWM
module should receive a value, and when it should receive nothing so that a pause between notes is
heard.

PWM & Tone generation

The tone generator is made up of many sub components including lookup tables, PWM unit and
registers. Its role is to take a note received from the timing module, and output an analog signal that will
produce a note of a particular frequency in a speaker.

In order to play a note, the tone generator receives an 8-bit identifier which is used to index a lookup
table. The lookup table also takes in volume level, and based on these two input values will output the
current duty cycle value and a hold-duration to the PWM unit. The current duty cycle value is one of 64
‘slices of a sine wave’; that is to say; one of 64 values of range 0-255 that emulate the amplitude of a
sine wave. If the volume is not 100%, then the value amplitude value is instead read from a separate
lookup table which has values that represent a wave at the desired volume (this could have been
replaced with shifting, but we did not have time to make this change). The hold-duration value from the
look up table is used to determine the frequency of the note. If this value is larger, the PWM unit will
stay on the same duty cycle for a longer period of time, resulting in a lower frequency sine wave.

Prevention of glitching on note switching was possible by holding the PWM value during a rest note or a
note gap and continuing from that value when the next duty cycle value was fetched from the lookup
table.

Nexys board features
Our final prototype makes use of the following Nexys board components:

* Buttons — Buttons 0, 1 and 2 are reserved for play, pause and stop. Button 3 is reserved for
special functions depending on the switch settings, but is used to simulate a baton swing, and
fast-forward/rewind. The buttons were chosen because they represent the most convenient
input method for simple commands such as play and stop.

* Switches — Switches are used to control some of the modes of the board. For example, two
switches are dedicated to volume, one switches between baton detection and BPM from the

file. Switches were chosen for these functions because there are fewer buttons, and some thing
such as settings and modes are easier to see what state they are in by looking at the switch.

* 7 Segment display — The current BPM detected on the sensor is displayed on the 7-seg display.

* Block ram — The downloader uses block ram to implement the board memory. Block ram was
used over SDRAM as it was easier to first implement, and didn’t present any performance or
storage limitations.

* 100MHz clock — We used the 100MHz clock on the Nexys board for no other reason than we
first started prototyping with 100MHz and never down converted the code to a slower speed.
This didn’t provide any limitations to our design, but a slower clock could have also been used.

FPGA hardware — software interface
The FPGA is able to interface between hardware and software because of a dedicated Windows

downloader program, the Digilent DPCUTIL DLL, and a special finite state machine on the board
designed to handle incoming data.

The downloader program, which was completely software, was custom built to take in a file from
command line, and write each byte to the board using the API provided in the DPCUTIL library. Most of
the hard work of interfacing between software and hardware is done by the APl in the DPCUTIL on our
behalf. The DPCUTIL.dII library was supplied by Digilent, and uses EPP over USB to interface with the
Spartan FPGA. The EPP uses a shared 8-bit data bus, and 4 main control signals (Address Strobe, Data
Strobe, Write, and Wait) to control the flow of data over the bus. During EPP the computer acts as
master, and the device as slave. On the FPGA, we developed a finite state machine based off a Digilent
reference design that loads addresses and data from EPP and transfers the data into block ram for use in
the rest of the design.

Waveform Generation

Our final design uses 8-bit pulse width modulation to create analog signals to drive the speaker. A
lookup table stores 64 samples of a sine wave and a counter is used to iterate through all 64 values.
These values are supplied to the PWM unit as its duty cycle. In order to produce notes of different
frequency, the counter does not increment on every clock tick, but instead only increments after the
time has elapsed that is 1/64"™ of the desired wave’s period. This means that all 64 samples of the wave
will have been sent to the speaker in the same amount of time as the period of the wave, effectively
creating a wave of the desired frequency in the speaker. The logic for enabling the counter to increment
was implemented as an internal timer in the lookup table module. Different frequencies were obtained
finding a new value for the internal counter in a dedicated lookup table. This value would change the
internal counter in the lookup table, which would cause the counter iterating through each sample of
the wave to slow or increase, resulting in a different frequency wave.

Software Design

The PC software was created using Java, Swing for the graphical user interface, and netbeans to auto-
generate large parts of the underlying code. For the graphical user interface, most buttons used action
listeners and updated or inserted the necessary information based on the user’s input. File input was
built using netbeans’ existing templates, and the input was then used to display in a JTextArea so users
could edit the music file. Some of the user interface aspects such as note type and duration were build
using JSlider and radio buttons.

One of the extension features of the PC software was the ability for the user to preview their song by
playing it in the app. This was built using javax.midi. Sequencer methods such as Sequencer.stop(),
Sequencer.pause(), Sequencer.resume() allowed easy playback control without the need for
multithreading.

Downloading to the board required the generation of the binary file in the same directory as the java
app and calling our downloader application to run, with the binary file specified as a command line
input. The downloader.exe would output a success or failure message to stdio which would be parsed by
the java app, and used to show a success or failure dialog box in the GUI.

The downloader.exe program was written using the Digilent DCPUTIL APl and dynamic linked library.
This provided simple functions that could place a byte in a register on the board, and handled the lower
level driver/USB interaction with the board. The downloader.exe read a file from the command line,
opened a connection to the board, and looped through the input file writing each byte to the board. We
encountered reliability issues with writing to the board, so in order to ensure accurate downloading, the
downloader.exe would read back the last byte written, and if necessary write it again. This gave us vastly
superior accuracy at the expense of limiting our file size to 256 bytes, as data could no longer be
streamed into the registers. At the end of the transaction with the board, the downloader.exe closes the
connection with the board, and returns a success message to the java app.

Final Budget

This project came in significantly under budget with a total cost of approximately $17.
Component Description Price
Sharp GP2Y0OA21KOF Sharp Analog distance sensor, range 10-80 cm $15.00
Im331 Digital comparator $2.00
Resistors Priceless.

Retrospect

Compared to our initial project plan there have been a few modifications along the way. Our timeline
planning was not very accurate — a lot of tasks took longer than expected although this didn’t impact our
ability to finish in time. Also, many of the Gantt chart tasks were very generic tasks so it was difficult to
be precise about what had been achieved and what had not. Our budget however, was very accurate.
Our initial extension features were not overly ambitious, but we did not realise that some extension
features would be quite trivial to implement, such as fast forward and volume control. Nor did we
anticipate having as much difficulty as we did with our sensors.

At the risk of sounding trite, if we were able to start all over again we would do many things differently.
We would establish clearer interfaces between the different VHDL components. We encountered a few
issues when integrating the pulse width modulation and the timing module like bit-widths of vectors and
active high vs active low signals. We would of course, start sooner in the semester, so that we could get
the fundamentals completed earlier. There were too many delays with our sensor circuit and the
ordering of new sensors. Our downloader wasn’t complete until the last moment, which caused added
stress and complications. Our PC software should have focused on playback first, before adding novelty
features.

In terms of our PC software, using the netbean’s system to auto generate code created a lot of
headaches. While it was easier than designing the GUI manually, it resulted in massive amounts of code
which was hard to re-structure and debug. Javax.midi was used instead of JFugue, but this resulted in a
poorer sound quality. JFugue’s note playback, in contrast, was more consistent and sounds closer to real
piano notes. There were also some Ul tweaks we would have made : default notes should have been
crotchets, and creating an interface to allow for tempo changes midway through a song.

For the VHDL components, more rigorous testing of the different components was necessary. We
encountered several bugs with our playback module which was only picked up when components were
integrated. If we had more time, tone generation could have been optimised by using bit-shifting to
change the volume dynamically instead of consulting separate lookup tables for hardcoded amplitudes.
We didn’t have enough time to fully debug our downloader VHDL, which we worked around by checking
each byte that was written, but this had the side effect of our file size being limited to 256 bytes.

All in all, we were quite happy with having achieved all we set out to achieve and thoroughly enjoyed
the project and the challenges it presented.

Appendices

Appendix 1

Music notes

Notation BPM Length (beats) a2l
normal
- —240 BT bpm 80
1/4 p
Music Player ®staws | 220 e di 5q)
. - 4 s
S -180 12 o4 sh
Timi - 160 3/4 b4 sq
imini - 140
| Browse for input.txt | | Encode J L Configure | | Program to Board | & 120 1 Eg :g
(® Normal -100 11/2 5 sq
) Slurred - 80 2 S sq
V urre ~60 3
O Staccato -40 4
Pause Play Stop 30| 8
d3b e3b g3b a3b b3b d4b edb géb a4b b4b dSb eSh asb bsb
c3# d3# f3# 3% a3# ca# da# fa# ga¥ a4# cS# dS# fS# g5# aS#
a3 d3 e3 f3 93 a3 b3 c4 d4 e4 f4 g4 a4 b4 S ds e3 fS g5 as bs <6 - ‘
v
[Rest Note J [Clear

Appendix 1. The Music Player PC Application

Appendix 2

»* cxl/\,“\-to Nl

— Fimesr O

- X'\‘M", D k (

Swwj ”
Sensor

Appendix 2: Diagram of the motion and periods when the timer is active.

